595. Infrared Absorption of Heteroaromatic and Benzenoid Sixmembered Monocyclic Nuclei. Part X. ${ }^{1}$ Pyridones and Pyridthiones.

By A. R. Katritzky and R. Alan Jones.

The infrared spectra of ten pyridones and six pyridthiones are recorded. Tentative assignments for most of the bands are made on the basis of the similarity of the spectra of these with those of other heteroaromatic compounds.

Previous papers in this and a cognate series were concerned with the infrared spectra of monosubstituted pyridines ${ }^{2}$ and pyridine 1-oxides ${ }^{3}$ and bands were tentatively assigned to specific molecular vibration modes. The compounds were found to possess four ringstretching modes in the $1600-1400 \mathrm{~cm} .^{-1}$ region, the positions of which were relatively constant and the intensities of which could be correlated with the charge disturbance created in the ring by substituent and hetero-group. The in- and out-of-plane CH bending depended mainly on the number and relative orientation of the ring hydrogen atoms (for a review see ref. 4).

The present work was undertaken in an attempt to interpret the spectra of, and extend the above generalisations to, pyridones and pyridthiones. As planar six-membered ring compounds in which each annular atom possesses a p-orbital perpendicular to the plane of

[^0]the ring and a total of six π-electrons they are aromatic and their reactions are in accordance with this. ${ }^{5}$

Pyrid-2- and -4-one are usually depicted by the uncharged structures (I) and (IV), but charged canonical forms (e.g., II, III) are of great importance in these mesomeric compounds, and such structures demonstrate the similarity to pyridine l-oxides (cf. V). As before, the spectra were measured as 0.189 m -solutions in purified chloroform in a 0.106 mm .

(I)

(1I)

(III)

(IV)

(V)
compensated cell. The bands in the regions $4000-3020,3000-1240,1200-800 \mathrm{~cm} .^{-1}$ (i.e., the region unobscured by solvent absorption) are recorded in Tables 1 and 2; tentative assignments are given at the heads of the columns to the molecular modes approximately depicted in formulæ (VI)-(XXIV). The compounds containing H or OH groups at the 1-position were less soluble: in the 2 -series saturated solutions had to be used in two cases and in the 4 -series satisfactory solution spectra could not be obtained.

NH and OH Stretching Frequencies (Tables 1 and 2, col. 1).-All the compounds are shown to be very strongly hydrogen-bonded, both by the positions of the peaks and by their broad nature. 1-Hydroxypyrid-2-one and -2-thione exist as monomers (cf. XXV);

strong hydrogen bonds involving sulphur are known (e.g., XXVI) ${ }^{6}$ but are rare. Pyrid2 -one is a dimer, presumably (XXVII), under these conditions, ${ }^{7}$ and pyrid-2-thione is also largely dimerised in chloroform solution (as shown cryoscopically).

The $3000 \mathrm{~cm} .^{-1}$ Region (Table 1, col. 2; Table 2, col. 2). -All the compounds show a

Col. 3

(VII)

4

6

7

$13,14 \dagger$

16

18

20

* Double bonds are omitted.
\dagger As a Referee has commented, the assignment of the bands in both cols. 13 and 14 of Table 1 to mode (X) is not certain. However, as the Referee implies, it is unlikely that the fourth β_{CH} vibration [i.e., that corresponding to (XIX) for the 4 -series] should absorb at frequencies as low as these. Further, any assignment to $\nu \mathrm{N}-\mathrm{R}$ frequencies would leave bands unexplained in the $\mathrm{N}-\mathrm{H}$ and $\mathrm{N}-\mathrm{O}-\mathrm{R}$ compounds. We thus tentatively let the assignment of the doublet to mode (X) stand.

[^1]Table 1. Pyrid-4-ones and-thiones.
 Pyrid-4-ones.

1	$\mathrm{H}(\mathrm{Nj})$	$\left\{\begin{array}{l} 3200 \mathrm{~m} \\ 2650 \mathrm{~m} \end{array}\right.$			$(-)$	1631	s	1548	s	1502	S	1384	s
2	Me	NA	2970	170	$1664 \quad 165$	1643	600	1575	600	1513	85	1401	155
3	$\mathrm{CH}_{2} \mathrm{P}$	NA	2970	150	1660* 130	1640	650	1575	550	1500	90	1408	90
4	OMe	NA	2980	165	1650*290	1624	440	1577	430	1493	180	1403	25
5	$\mathrm{OCH}_{2} \mathrm{Ph}$	NA	2970	145	1645*195	1630	510	1575	550	1484	50	1394	

Pyrid-4-thiones.

6	$\mathrm{H}(\mathrm{Nj})$	3190w			-	1615 vs	NA	1540	w	1458	s
7	Me	NA	2940	150	-	$1635>500$	NA	1510	45	1471	330
8	$\mathrm{CH}_{2} \mathrm{Ph}$	NA	2960	135	-	1621600	NA	1510	60	1470	340
9	$\mathrm{OH}(\mathrm{Nj})$	$\left\{\begin{array}{c} 3090 \mathrm{w} \\ c a .2500 \mathrm{w} \\ \text { broad } \end{array}\right.$			-	$\begin{cases}1613 & \mathrm{~s} \\ 1580 * & \mathrm{~s}\end{cases}$	NA	1540*	w	1472	S

Pyrid-4-thiones.

1	NA	NA	NA	NA	$\left\{\begin{array}{l} 1302 \\ 1260 * \end{array}\right.$		1187	S	1144*		NA	
2	NA	$\begin{cases}1488 & 50 \\ 1440 & 15\end{cases}$	NA	NA	1361	45	1192	220	1144	20		A
3	$\left\{\begin{array}{l}1486 \\ 1456\end{array}{ }^{*} 95\right.$	NA	135560	NA	$\left\{\begin{array}{l}1376 \\ 1330 \\ 1300\end{array}\right.$	65 30 30	1176	320	-			A
4	NA	$\begin{cases}1460 & 85 \\ 1445 & 75\end{cases}$	NA	132660	1292	60	1179	75	1158	95		A
5	145635	NA	135040	132640	-		1174	80	1152	70		A
6	NA	NA	NA	NA	$\left\{\begin{array}{l} 1373 \\ 1276 \end{array}\right.$	$\begin{aligned} & \mathbf{w} \\ & \mathbf{w} \end{aligned}$	1195	mw	1149	m	1106	S
7	NA	$\left\{\begin{array}{l}\text { (-) }\end{array}\right.$	NA	NA	-				1150*	20	1119	>550
8	$\left\{\begin{array}{l} 1500 * 55 \\ 1452 * 70 \end{array}\right.$	NA	135425	NA	1369	30	1184	35	1160	25	1108	750
9	NA	NA	NA	$(-)$	1380	w	1194	m	1180	m	1110	S

Pyrid-4-thiones.

Table 2. Pyrid-2-ones and-thiones.
 Pyrid-2-ones.

Pyrid-2-thiones.

7	H (sat.)
8	Me^{2}
9	$\mathrm{CH}_{2} \mathrm{Ph}$
10	OH

	$\begin{aligned} & 2900 \mathrm{~s} \\ & \text { (v. broad) } \end{aligned}$			NA	$\left\{\begin{array}{l} 1620 \\ 1590 \\ 1628 \end{array}\right.$	$\begin{gathered} \mathrm{m} \\ \mathrm{~s} \\ 145 \end{gathered}$	$\begin{cases}1560^{*} & \mathrm{~m} \\ 1525 * & \mathrm{~m} \\ 1537 & 220\end{cases}$	
NA		2960	115	NA				
NA		2960	95	NA	1624	130	1534	260
2600	30	2990	70	NA	1612	70	1572	150

Pyrid-2-thiones.

1	NA		NA		1472	90	1444	110	1377	20	1254	75	1156	55
2	NA		1466	10	1500	15	1415	20	1387	15	1318	75	1154	85
3	$\left\{\begin{array}{l}1465 \\ 1459\end{array}\right.$	35 45	NA		1501	30	1435	20	$\left\{\begin{array}{l}1400 \\ 1352\end{array}\right.$	15 45	1242	70	(-	
4	NA		NA		1500	m	1446	m	1367	m	1252*	w	1182	m
5	NA		$\left\{\begin{array}{l}1457 \\ 1422\end{array}\right.$	35 35	1500 *	40	1439	55	1364	10	1272	80	1160	60
6	$\left\{\begin{array}{l} 14922^{\frac{*}{*}} \\ 1455^{*} \end{array}\right.$	$\begin{aligned} & 60 \\ & 75 \end{aligned}$	NA		1492 *	60	1455 ${ }_{*}^{*}$	75	1345	55	1255	125	1159	50
7	NA		NA		1490*	w	1443	mw	1368	m	1250*	mw	1179	w
8	NA		1460	35	$\left\{\begin{array}{l}1485 \\ 1473\end{array}\right.$	$\begin{array}{r} 35 \\ 155 \end{array}$	1417	240	1350	5	1306	35	1193	60
9	$\left\{\begin{array}{l} 1500 \\ 1465 \end{array}\right.$	$\begin{aligned} & 50 \\ & 95 \end{aligned}$	NA		$\left\{\begin{array}{l}1488 * \\ 1470\end{array}\right.$	$\begin{array}{r} 35 \\ 145 \end{array}$	1422	185	1337	10	1252	50	1184	80
10	NA		NA		$\left\{\begin{array}{l} 1486 \\ 1458 \end{array}\right.$	$\begin{aligned} & 185 \\ & 200 \end{aligned}$	1416	280	1350	10	1263	110	$\left\{\begin{array}{l}1189 \\ 1165\end{array}\right.$	65 85
	13		14		15		16		17		18		19	
No.	${ }_{c \mathrm{~m}}^{-1}{ }_{-1}$		${ }_{n-1}^{\nu \mathrm{C}=\mathrm{S}}$		$\underset{c^{-1}}{\nu \mathrm{NO}}$	ε_{A}	${ }_{\mathrm{cm}}{ }^{-1} \mathrm{Ph}$	ε_{A}	M	$\varepsilon_{\text {A }}$	${ }_{\mathrm{cm} . .^{-1}}^{\beta_{\mathrm{Cl}}}$	$\varepsilon_{\text {A }}$	$\underset{\text { breath }}{\text { Rin }}$ $\mathrm{cm} .^{-1}$	$\begin{aligned} & \mathrm{g} \\ & \text { ing? } \end{aligned}$

Pyrid-2-thiones.

1	-		$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$		$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$		$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	NA		1012^{*}	25	${\underset{\mathrm{NA}}{ }}_{993} 100$		
2	1138*	25			1050	45								
3	1144	110	NA				NA		$\begin{cases}1074 & 25 \\ 1028 & 20\end{cases}$	NA		1018	20	NA
4	1148	m	NA		1110	w	NA	NA		-		NA		
5	1141	90	NA		1104	80	NA	-		1010	15	NA		
6	1141	80	NA		1102	80	$\begin{cases}1073 \\ 1025 & 5 \\ \end{cases}$	NA		1010	20	NA		
7	$(-)$		1135	s	NA		NA	NA		1040	m	998 m		
8	(-)		$\left\{\begin{array}{l}1142 \\ 1112\end{array}\right.$	230 440	NA		NA	1053	45	1020	25	NA		
9	1150	45	$\left\{\begin{array}{l}1113 \\ 1104 \\ 1086\end{array}\right.$	150 175 240	NA		$\left\{\begin{array}{c} (-) \\ 1027 \underset{*}{*} 130 \end{array}\right.$	NA		1027 ${ }_{*}^{*}$		NA		
10	(-)		1142	290	$\left\{\begin{array}{l}1112 \\ 1081\end{array}\right.$	$\begin{aligned} & 35 \\ & 50 \end{aligned}$	NA	NA		$\left\{\begin{array}{l}1024 \\ 1013\end{array}\right.$	10 15	NA		

No.	$\stackrel{20}{\nu \mathrm{C}-\mathrm{O}}$	$\underset{\substack{\gamma_{\mathrm{OH}}}}{\substack{ \\\hline}}$		22		Extra bands		M. p. or b. p. $/ \mathrm{mm}$.		Ref.
	$\mathrm{cm} .^{-1} \varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	Found	Lit.	
1	NA	917	35	$\left\{\begin{array}{l} 845 \\ 837 \end{array}\right.$	20 20	1097	15	105-107 ${ }^{\circ}$	106-107 ${ }^{\circ}$	h
2	NA	876	50	842	40			$\dagger 98-100^{\circ} / 2$	122-124*/11	i
3	NA	873	45	842	75	953	10	74-75 ${ }^{\circ}$	$75-76{ }^{\circ}$	j
4	NA	$\left\{\begin{array}{l} 894 \\ 888 \end{array}\right.$	m	835	m			$148-149^{\circ}$	$149-150{ }^{\circ}$	k
5	980115	871	30	832	60			$\dagger 130^{\circ} / 0 \cdot 05$	$130^{\circ} / 0.05$	c
6	$\begin{cases}960 & 40 \\ 939 & 40\end{cases}$	$\left\{\begin{array}{l}912 \\ 867\end{array}\right.$	$\begin{aligned} & 70 \\ & 45 \end{aligned}$	834	85			$76-78^{\circ}$	$76-78^{\circ}$	c
7	NA	874	w	<800				124-126	125	l, f
8	NA	-		804	45			88-90	89-90	m, f
9	NA	-		830	25	$\left\{\begin{array}{l}990 \\ 952\end{array}\right.$	15	85-87	-	b
10	NA	-		813	45			63-64	65-67	n

$\mathrm{Nj}=$ Nujol mull (insoluble in CHCl_{3}). sat. $=$ saturated solution in $\mathrm{CHCl}_{3} . \quad{ }^{*}$ Shoulder. $\quad *$ Band considered to be the superimposition of two bands. - Absence of band. (一) Band masked by stronger absorption. $\left(\mathrm{CHCl}_{3}\right)$ Band masked by solvent. NA $=$ Band neither found nor expected. § Band the intensity of which is markedly raised by overlap with neighbouring band. \dagger B. p.

Refs.: a, Tschitschibabin and Ossetrowa, Ber., 1925, 58, 1711. b, This work. c, Gardner and Katritzky, J., 1957, 4375. d, Cunningham, Newbold, Spring, and Stark, J., 1949, 2091. e, King and Ware, J., 1939, 873. f, Jones and Katritzky, J., 1958, 3610. g, Ochiai, J. Org. Chem., 1953, 18, 534. h, Königs and Geigy, Ber., 1884, 17, 589. i, Prill and McElvain, Org. Synth., Coll. Vol. II, John Wiley and Son Inc., New York, 1946, p. 419. j, Fischer, Ber., 1899, 32, 1302. k, Shaw, J. Amer. Chem. Soc., 1949, '71, 67. l, Philips and Shapiro, J., 1942, $584 . \quad m$, Gutbier, Ber., 1900, 33, 3359. n, Shaw, Bernstein, Losee, and Lott, J. Amer. Chem. Soc., 1950, 72, 4362.

Approximate vibration modes of pyrid-2-ones.*

strong band at $3000-2940[2975 \pm 20] * \mathrm{~cm} .^{-1}$ of intensity ($135-170$) [(155土15)] * for the 4 -series and ($70-115$) $[(85 \pm 15)]$ for the 2 -series. This band was not present for a carbon tetrachloride solution of 1-benzylpyrid-2-one and for a tetrachloroethylene solution of 1 -methylpyrid-2-thione, which indicates that it was due to the H -bonded chloroform $\mathrm{C}-\mathrm{H}$ stretching band (cf. refs. 2, 3).
$\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{S}$ Stretching Modes (Table 1, cols. 5, 15; Table 2, cols. 3, 14).-These modes are found (see Table 3). In the 4 -series earlier workers ${ }^{8}$ assigned the band at $c a .1630 \mathrm{~cm} .^{-1}$ (Table 1, col. 4) to the $\vee \mathrm{C}=\mathrm{O}$; the present assignment is in better agreement with the pyrid-4-thione spectra and we have been informed by Dr. L. J. Bellamy ${ }^{9}$ that application

[^2]Table 3.

	$\nu^{2}=0$	${ }_{\nu} \mathrm{C}=\mathrm{S}$
4-Series	$1577-1575 \mathrm{~cm} .^{-1}(430-600)$	$1119-1108(>550)$
2-Series	$1666-1655 \mathrm{~cm} .^{-1}(550-700)$	1142-1112 (290-440)

of his method of solvent shifts led him independently to the same assignment. The low positions of the $\mathrm{C}=\mathrm{O}$ stretching bands are in accord with the expected high contribution of single-bond character of this link. Our data for the $\mathrm{C}=\mathrm{S}$ bands are in reasonable agreement with those of Spinner ${ }^{10}$ who has discussed this region for pyrid-2- and -4-thione and their l-methyl derivatives.

Ring-stretching Modes (Table 1, cols. 3, 4, 6, 7; Table 2, cols. 4, 5, 8, 9). -The bands are assigned to these modes as in Table 4. These compounds show the usual four ring-

Table 4.
4-Series: ring-stretching modes.
ca. $1650 \mathrm{~cm}^{-1}$ shoulder. $1643-1621 \mathrm{~cm} .^{-1}(440-650)\left[1630 \pm 10 \mathrm{~cm} .^{-1}(555 \pm 90)\right]$ $1510-1484 \mathrm{~cm} .^{-1}(45-180)\left[1502 \pm 11 \mathrm{~cm}^{-1}(80 \pm 50)\right]$ $1408-1394 \mathrm{~cm} .^{-1}(25-155)$ for CO compounds; $1471-1470 \mathrm{~cm} .^{-1}(330-340)$ for CS compounds.

2-Series: ring-stretching modes.
1628-1590 [1603士 17] cm. ${ }^{-1}$; (300-370) for $\mathrm{CO},(70-145)$ for CS
$1572-1535 \mathrm{~cm} .^{-1}(105-220)$ [1545 $\left.\pm 12 \mathrm{~cm} .^{-1}(160 \pm 55)\right]$
$1500-1458[1479 \pm 17] \mathrm{cm}^{-1}$; ($15-90$) for CO, $(155-200)$ for CS
$1455-1415[1429 \pm 12] \mathrm{cm} .^{-1}$; $(20-110)$ for CO, $(240-280)$ for CS.
stretching bands, at positions not very different from those in pyridines and benzenes. ${ }^{4}$ The 4 -series compounds are of $C_{2 c}$ symmetry and there is a very large disturbance of charge symmetry co-directional with the symmetry axis; the fact that one of the pair of higherfrequency bands is much stronger than the other is in agreement with this. ${ }^{11}$ As expected, for the 2 -series compounds of C_{s} symmetry, the difference in the intensities of the pair of higher-frequency bands is less. Changes in the position and intensity of the pairs of bands of lower frequency are less easy to explain: these bands are considerably stronger in the pyridthiones than in the oxygen compounds.

Vibration of the Benzyl Groups. ${ }^{12-T h e ~ b e n z e n e ~ r i n g ~ v i b r a t i o n s ~ n e a r ~} 1600 \mathrm{~cm} .^{-1}$ are doubtless hidden by stronger absorption; those near 1490 and $1450 \mathrm{~cm} .^{-1}$ can be distinguished (Table 1, col. 8; Table 2, col. 6), as can the phenyl β_{CH} frequencies near 1070 and $1028 \mathrm{~cm} .^{-1}$ (Table 1, col. 17; Table 2, col. 16). A band at $1355-1350 \mathrm{~cm} .^{-1}$ is possibly the CH_{2} wagging mode.

Vibrations of the Methyl Groups (Table 1, col. 9; Table 2, cols. 7, 17).-Some bands in the 1450 and $1050 \mathrm{~cm} .^{-1}$ regions are very tentatively assigned to methyl bending and rocking modes.

Ring Modes.-The band for the 2 -series compounds at $1387-1345 \mathrm{~cm} .^{-1}$ (5-45) $[1358 \pm 17(20 \pm 15)]$ (Table 2, col. 10) is possibly the ring vibration (XVIII). A band has been reported at $1315 \pm 11 \mathrm{~cm} .^{-1}$ in ortho-disubstituted benzenes ${ }^{12}$ but is usually not easily detected in heterocyclic compounds. In the 4 -series the compounds also show some unexplained bands hereabouts (Table 1, col. 12). Aromatic compounds in which the ring is free from heavy substituents in the $1,3,5$-positions show a ring breathing mode near $1000 \mathrm{~cm} .^{-1}$; such are possibly the bands of Table 2, col. 19.

In-plane CH Deformation Modes (Table 1, cols. 13, 14, 16, 18; Table 2, cols. 11-13, 18). -These bands have been assigned (see Table 5) by comparison with other compounds containing the same orientation of ring hydrogen atoms.

The NO Stretching Vibration.-This will absorb at fairly high frequencies because the
${ }_{10}$ Spinner, J. Org. Chem., 1958, 23, 2037.
${ }_{11}$ Katritzky, J., 1958, 4162.
12 Randle and Whiffen, Paper No. 12, Report on Conference of Molecular Spectroscopy, Institute of Petroleum, 1954.

Table 5.

4-Series	para-Disubst. benzenes ${ }^{13}$
Obscured	$\left[1258 \pm 11 \mathrm{~cm} .^{-1}(\right.$ ca. 15) $]$
Doublet at $\left\{\begin{array}{l}1192-1174[1185 \pm 7] \mathrm{cm} .^{-1} \\ 1158-1144[1151 \\ \hline 7] \mathrm{cm} .^{-1}\end{array}\right\}$ variable ε_{A}	$\left[1176 \pm 6 \mathrm{~cm} .^{-1}\right.$ (var.)]
	$\left[\begin{array}{l} {\left[1111 \pm 7 \mathrm{~cm} .^{-1}(20 \pm 15)\right]} \\ {\left[1013 \pm 5 \mathrm{~cm} .^{-1}(\text { var. })\right]} \end{array}\right.$
2 -Se	ortho-Disubst. benzenes ${ }^{12}$
$1318-1254 \mathrm{~cm} .^{-1}(35-125)\left[1270 \pm 32 \mathrm{~cm} .^{-1}(80 \pm 30)\right]$	$\left[1269 \pm 17 \mathrm{~cm} .^{-1}(c a .15)\right]$
1193-1154 cm. ${ }^{-1}(50-85)\left[1168 \pm 15 \mathrm{~cm} .^{-1}(70 \pm 15)\right]$	$\left[1160 \pm 4 \mathrm{~cm} .^{-1}(20 \pm 10)\right]$
1150-1141 [1145 $\pm 4] \mathrm{cm} .^{-1}, \varepsilon_{\mathrm{A}}$ variable	$\left[1125 \pm 14 \mathrm{~cm}^{-1}(25 \pm 15)\right]$
$1040-1010 \mathrm{~cm} .^{-1}(\leqslant 25)\left[1019 \pm 11 \mathrm{~cm} .^{-1}\right]$	[$\left.1033 \pm 11 \mathrm{~cm} .^{-1}(50 \pm 40)\right]$

NO bond has some double-bond character in these compounds (overlap of oxygen p-orbitals with the aromatic ring). Bands near $1325 \mathrm{~cm} .^{-1}$ (Table 1, col. 11) and $1100 \mathrm{~cm} .^{-1}$ (Table 2, col. 15) have been provisionally assigned to these modes, but the first is doubtful.

Alkyl-Oxygen Stretching Mode.-This has been assigned bands near $950 \mathrm{~cm} .^{-1}$ (Table 1, col. 19; Table 2, col. 20).

Out-of-plane CH Deformations.-The characteristic in-phase mode of four hydrogen atoms in $2,3,5,6$-positions is shown in the 4 -series at $845-843 \mathrm{~cm} .^{-1}(200-280)$ $\left[844 \pm 1 \mathrm{~cm} .^{-1}(240 \pm 35)\right]$ for the oxo-compounds and at $821-819 \mathrm{~cm} .^{-1}(135-160)$ for the thio-analogues (Table 1, col. 20).

In the 2 -series (Table 2, cols. 21, 22) there is a band at $917-871 \mathrm{~cm}^{-1}(30-70)$ (absent for two of the thio-compounds) and another at $845-832 \mathrm{~cm} .^{-1}(20-85)$ for the oxocompounds and at $813 \mathrm{~cm} .^{-1}$ for the thio-analogues. ortho-Disubstituted benzenes with two donor substituents absorb at $916-906 \mathrm{~cm} .^{-1}(10-25)$ and many ortho-substituted benzenes show a band in the $900-800 \mathrm{~cm} .^{-1}$ region. ${ }^{1}$

General Conclusions.-The spectra of pyridones and pyridthiones have been shown to resemble those of other heteroaromatic compounds. The generalisations established for pyridines, etc., apply to these compounds and it has been possible to give a tentative assignment to nearly all the bands. The spectra reported here for potentially tautomeric pyridones and pyridthiones support the conclusion ${ }^{14}$ that these compounds exist predominantly as such and not in the hydroxy- or mercapto-pyridine form.

Experimental.-1-Benzylpyrid-4-one. Pyrid-4-one (0.95 g .), benzyl chloride (1.25 g .), and sodium in ethanol (0.22 g . in 25 c.c.) were refluxed for 1 hr . The solid was filtered off and the filtrate evaporated to give 1-benzylpyrid-4-one ($1 \cdot 1 \mathrm{~g} ., 60 \%$) which crystallised from benzene as deliquescent plates, m. p. 109-111 (Found: C, 77.7; H, 6.3; N, 7.7. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}$ requires C, $77 \cdot 8$; H, $6 \cdot 0$; N, $7 \cdot 6 \%$).

1-Benzylpyrid-4-thione. 1-Benzyl-4-pyridone (0.4 g .) was heated with phosphorus pentasulphide (0.8 g .) for 3 hr . at 130°. Aqueous sodium hydroxide ($10 \% \mathrm{ca}$. $10 \mathrm{c} . \mathrm{c}$.) was added and the alkaline solution extracted with chloroform (2×20 c.c.). The extracts were dried and evaporated to give 1-benzylpyrid-4-thione ($0.19 \mathrm{~g} ., 45 \%$) which crystallised from ethanol as yellow plates, m. p. 183-185 (Found: C, 71.3; H, 6.0; N, 7.0. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NS}$ requires C, 71.6; H, $5 \cdot 5$; $\mathrm{N}, 7 \cdot 0 \%$).

1-Benzylpyrid-2-thione was prepared by a method analogous to that of the 4 -compound and crystallised from benzene as yellow needles (40%), m. p. $85-87^{\circ}$ (Found: C, $71 \cdot 0 ; \mathrm{H}, 5 \cdot 56 \%$).

Other compounds were prepared by recorded methods and recrystallised or distilled immediately before use.

The spectra were measured under the same conditions as before. ${ }^{1}$
We thank Dr. L. J. Bellamy for an interesting discussion and for communicating to us his unpublished results. This work was carried out during the tenure (by R. A. J.) of a D.S.I.R. maintenance grant.

University Chemical Laboratory, Cambridge.
[Received, November 18th, 1959.]
${ }_{13}$ Katritzky and Simmons, J., 1959, 2051.
${ }^{14}$ Gardner and Katritzky, $J ., 1957,4375$; R. A. Jones and Katritzky, $J ., 1958,3610$; Mason, $J .$, 1957, 4874, 5010; 1958, 674.

[^0]: ${ }^{1}$ Part IX, Katritzky and R. A. Jones, J., 1959, 3670.
 ${ }^{2}$ (a) Katritzky and Gardner, J., 1958, 2198; (b) Katritzky and Hands, ibid., p. 2202; (c) Katritzky, Hands, and Jones, ibid., p. 3165.
 ${ }^{3}$ (a) Katritzky and Gardner, $J ., 1958$, 2192; (b) Katritzky and Hands, ibid., 2195; (c) Katritzky, Beard, and Coats, J., 1959, 3680.
 ${ }^{4}$ Katritzky, Quart. Rev., 1959, 13, 353.

[^1]: ${ }^{5}$ Katritzky and Lagowski, " Heterocyclic Chemistry," Methuen and Co. Ltd., London, 1960, pp. 51-52.

 6 Allen and Colclough, J., 1957, 3912; cf. Bellamy, " The Infra-Red Spectra of Complex Molecules," 2nd edn., Methuen, London, 1958, p. 351.

 7 Personal communication from Dr. C. Λ. Dekker.

[^2]: * Parentheses signify apparent molecular extinction coefficients and square brackets denote arithmetical means and standard deviations, calculated by omitting shoulders and, in the case of ε_{A}, overlapped bands.
 ${ }^{8}$ Leonard and Locke, J. Amer. Chem. Soc., 1955, 7\%, 1852.
 ${ }^{9}$ Personal communication, cf. Bellamy and Rogasch, Spectrochim. Acta, 1960, 16, 30.

