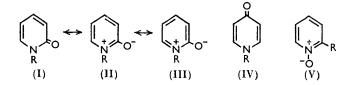
Infrared Absorption of Heteroaromatic and Benzenoid Six-595. membered Monocyclic Nuclei. Part X.¹ Pyridones and Pyridthiones.

By A. R. KATRITZKY and R. ALAN JONES.

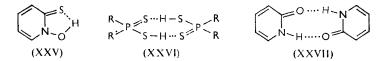
The infrared spectra of ten pyridones and six pyridthiones are recorded. Tentative assignments for most of the bands are made on the basis of the similarity of the spectra of these with those of other heteroaromatic compounds.

PREVIOUS papers in this and a cognate series were concerned with the infrared spectra of monosubstituted pyridines² and pyridine 1-oxides³ and bands were tentatively assigned to specific molecular vibration modes. The compounds were found to possess four ringstretching modes in the 1600—1400 cm.⁻¹ region, the positions of which were relatively constant and the intensities of which could be correlated with the charge disturbance created in the ring by substituent and hetero-group. The in- and out-of-plane CH bending depended mainly on the number and relative orientation of the ring hydrogen atoms (for a review see ref. 4).


The present work was undertaken in an attempt to interpret the spectra of, and extend the above generalisations to, pyridones and pyridthiones. As planar six-membered ring compounds in which each annular atom possesses a p-orbital perpendicular to the plane of

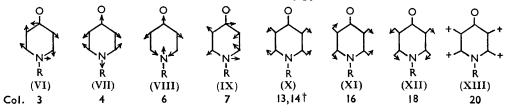
¹ Part IX, Katritzky and R. A. Jones, *J.*, 1959, 3670. ² (a) Katritzky and Gardner, *J.*, 1958, 2198; (b) Katritzky and Hands, *ibid.*, p. 2202; (c) Katritzky, Hands, and Jones, *ibid.*, p. 3165. ³ (a) Katritzky and Gardner, J., 1958, 2192; (b) Katritzky and Hands, *ibid.*, 2195; (c) Katritzky,

Beard, and Coats, J., 1959, 3680. ⁴ Katritzky, Quart. Rev., 1959, **13**, 353.


the ring and a total of six π -electrons they are aromatic and their reactions are in accordance with this.⁵

Pyrid-2- and -4-one are usually depicted by the uncharged structures (I) and (IV), but charged canonical forms (e.g., II, III) are of great importance in these mesomeric compounds, and such structures demonstrate the similarity to pyridine 1-oxides (cf. V). As before, the spectra were measured as 0.189M-solutions in purified chloroform in a 0.106 mm.

compensated cell. The bands in the regions 4000—3020, 3000—1240, 1200—800 cm.⁻¹ (*i.e.*, the region unobscured by solvent absorption) are recorded in Tables I and 2; tentative assignments are given at the heads of the columns to the molecular modes approximately depicted in formulæ (VI)—(XXIV). The compounds containing H or OH groups at the 1-position were less soluble: in the 2-series saturated solutions had to be used in two cases and in the 4-series satisfactory solution spectra could not be obtained.


NH and OH Stretching Frequencies (Tables 1 and 2, col. 1).—All the compounds are shown to be very strongly hydrogen-bonded, both by the positions of the peaks and by their broad nature. 1-Hydroxypyrid-2-one and -2-thione exist as monomers (cf. XXV);

strong hydrogen bonds involving sulphur are known (e.g., XXVI)⁶ but are rare. Pyrid-2-one is a dimer, presumably (XXVII), under these conditions,⁷ and pyrid-2-thione is also largely dimerised in chloroform solution (as shown cryoscopically).

The 3000 cm.⁻¹ Region (Table 1, col. 2; Table 2, col. 2).—All the compounds show a

Approximate vibration modes of pyrid-4-ones.*

* Double bonds are omitted.

† As a Referee has commented, the assignment of the bands in *both* cols. 13 and 14 of Table 1 to mode (X) is not certain. However, as the Referee implies, it is unlikely that the fourth β_{CH} vibration [*i.e.*, that corresponding to (XIX) for the 4-series] should absorb at frequencies as low as these. Further, any assignment to νN -R frequencies would leave bands unexplained in the N-H and N-O-R compounds. We thus tentatively let the assignment of the doublet to mode (X) stand.

⁵ Katritzky and Lagowski, "Heterocyclic Chemistry," Methuen and Co. Ltd., London, 1960, pp. 51-52.

⁶ Allen and Colclough, J., 1957, 3912; cf. Bellamy, "The Infra-Red Spectra of Complex Molecules," 2nd edn., Methuen, London, 1958, p. 351.

⁷ Personal communication from Dr. C. A. Dekker.

TABLE 1. Pyrid-4-ones and -thiones.

		1	2	3	4	5	6	7
No	1 Subat	vOH vNH	νCH	pyridone	ring stretch	νC=O	pyridone	ring stretch
NO.	1-Subst.	$cm.^{-1} \varepsilon_{\mathbf{A}}$		$cm.^{-1} \epsilon_{A}$	cm. ⁻¹ ε _A	$cm.^{-1} \varepsilon_{A}$	$cm.^{-1} \epsilon_A$	$cm.^{-1} \epsilon_{A}$
Pyria	l-4-ones.							
1	H (Nj)	$\frac{3200m}{2650m}$		()	1631 s	1548 s	1502 s	1384 s
2	Me	12650m NA	2970 170	1664 165				
3 4	CH ₂ Ph OMe	NA NA	$\begin{array}{rrrr} 2970 & 150 \\ 2980 & 165 \end{array}$	1660 * 130 1650 * 290				
$\overline{5}$	OCH ₂ Ph	NA	2970 145	1645 * 195				
Pyrie	d-4-thiones.							
$\frac{6}{7}$	H (Nj) Me	3190 w NA	2940 150	_	1615 vs 1635 > 500		1540 w 1510 45	1458 s 147 1 33 0
8	CH₂Ph	NA	2960 135		1621 60		1510 60	
9	OH (Nj)	$\begin{cases} 3090w \\ ca. 2500w \\ broad \end{cases}$			$\begin{cases} 1613 & s \\ 1580 & s \end{cases}$		1540 * w	1472 s
	()/	broad			∖1580 * s			
	0	0	10	11	19	19	14	15
	8	9	10 CH,	11	12	13 o		15
No.	\mathbf{Ph}	Me	wag	vNO	? cm. ⁻¹ ε _A	Pi	сн 	vC=S
- ·		cm. ^{−1} ε _A	$cm.^{-1} \epsilon_A$	$cm.^{-1} \epsilon_A$	$cm.^{-1} \epsilon_A$	$cm.^{-1} \epsilon_A$	cm. ⁻¹ ε_{A}	cm. ^{−1} ε _A
2	l- 4-t hiones.				∫1302 m	n 1187 s	1144 * w	NA
1	NA	NA	NA	NA	${1260 * w}$			1111
2	NA	$\{ \begin{smallmatrix} 1488 & 5 \\ 1440 & 1 \end{smallmatrix} \}$	$\frac{10}{5}$ NA	NA	1361 45	5 1192 220	1144 20	NA
3	f 1486 * 7	5 NA	1355 60) NA	$\begin{cases} 1376 & 63 \\ 1330 & 30 \end{cases}$			NA
U	{1456 9)			1300 30			
4	NA	$egin{pmatrix} 1460 & 8 \ 1445 & 7 \ 1445 & 7 \ \end{pmatrix}$	5 NA	1 326 60			1158 95	NA
5	1456 3		1350 40) (1373 w	1174 80	1152 70	NA
6	NA	NA	NA	$\mathbf{N}\mathbf{A}$	{1276 w	1190 mw	1149 m	1106 s
7	NA	{ (<u>—</u>)	NA	NA		(CHCl ₃)	1150 * 20	1119 > 550
8	$\begin{cases} 1500 * 53 \\ 1452 * 70 \end{cases}$		1354 25	NA	1369 30) 1184 35	1160 * 25	1108 750
9	NA	NA	NA	()	1 3 80 w	1194 m	1180 m	1110 s
			••	• •	•			
	16	17	18	19	20	Extra	М. р.	
No.	β_{CH}	Ph cm ⁻¹ s.	β_{CH}	$\nu C = O$	$\gamma_{\rm CH}$	Extra bands $cm.^{-1} \varepsilon_A$	Found	Lit. Ref.
Duni	d-4-thiones.						lound	1/10.
5			(1032 w	NT 4	(827 m	907 w ¹⁴	6—147° 1	$148\cdot5^{\circ}$ h
1	1081 w	NA NA	$\begin{cases} 1032 & w \\ 989 & w \\ 1015 & 25 \end{cases}$	NA · NA	$\begin{cases} 827 & m \\ 840 * w \\ 845 & 240 \end{cases}$	907 W 9	2—93 9	92—94 a
2 3	 1093 15	(1075 15	1015 25 1013 20	NA	845 240 845 200	10	9—111	— b
				(1027 65				
4	1085 25		1011 00	U 975 185	843 280			60—65 c
5	$1081 \ 25$	$\left\{ { {\begin{array}{*{20}c} {1081 * 25} {1027 * 5} } \end{array} ight.$	1010 25	$\left\{\begin{array}{rrr}939 & 50\\901 & 110\end{array}\right.$	843 240		2—114 11	2—113 d
6	1079 m	NA	1040 w	NA	792 s	(970 W	4—186	186 e, f
7	1094 * 35	NA ∫1075 * 40	1030 135	NA	819 1 3 5	16		61-163 f
8	(—)	{ []	1027 160	NA	821 160	18	3—185	— b
9	1098* m	NA	1029 w	960 w	${ 827 \ w \ 812 \ w }$		140	142 g

TABLE 2. Pyrid-2-ones and -thiones.

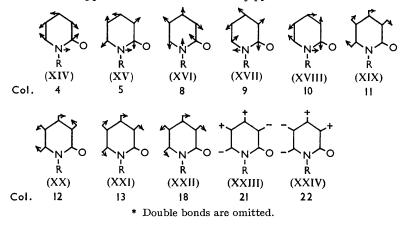

		I AI	2 2. 197	111-2-0712	is unu	3		4		5	
		T	2			5			stret	ching	
No.	1-Subst.	vOH or N	IH vCI		v(C=0	<u> </u>			·····	
		cm1 ε	A cm1	ε _A	cm.	-1 ε _Α	cm	ε		cm1	εΑ
Pyrid-2	2-ones.										
			55		105	a + a10					
1	н		50 2990 §	§ 160	$\begin{cases} 1672 \\ 1650 \end{cases}$	$2 * 210 \\ 6 & 650$	1619	330		1544	110
			20		(100	0 000					
2	Me	NA	3000	80	166		1590			1545	$\frac{105}{110}$
3 4	CH ₂ Ph OH (sat.)	NA 2400 s	2990 s 2940	105 s	$1659 \\ 1659$		$1590 \\ 1570$	440 * s		$\begin{array}{c}1541\\1560\end{array}$	s
5	OMe	NA	3000	75	1664	4 640	1593			1535	140
6	OCH_2Ph	NA	3000	80	166	6 700	1591	33 0		1539	190
Pyrid-2	2-thiones.										
7	H (sat.)		2900 s			NA	$\{1620$			{ 1560 *	
8	Me	NA	(v. broad) 2960	115		NA	1590 1628			{ 1525 * 15 3 7	m 220
9	CH ₂ Ph	NA	2960	95		NA	1624			1534	260
10	он		30 2990	70		NA	1612	70		1572	150
10	011	(v. broa	d)								
	6	7	8	9		10		11		1	2
	D	м	ring str	retching		Ring	`	D		$\beta_{\rm C}$	
No.	Ph cm. ^{~1} ε _A	Me cm. ⁻¹ ε _A	$cm.^{-1} \epsilon_A$	cm1	εΑ			β _{CH} m. ^{−1}	ε	$cm.^{-1}$	Η ε _A
Dunida											
2	2-thiones.	NA	1472 90	1444	110	1377	20 1	254	75	1156	55
$\frac{1}{2}$	NA NA	1466 10	1472 50 1500 15	1415	20	1387		318	75^{-10}	1154	85
3	1465 * 35	NA	1501 30	1435	20	$\{1400\$	15 1	242	70	(-	-)
4	1459 45 NA	NA	1500 m	1446	m	₹1352 1367	40	252 *	w	1182	m
- 5	NA	1457 35	1500 * 40	1439	 55	1364		272	80	1160	60
9		(1422 35	1000 40	1400	00	1904	10 1	2.2	00	1100	00
6	$\big\{ \begin{smallmatrix} 1492 \ \ast & 60 \\ 1455 \ \ast & 75 \end{smallmatrix} \big\}$	NA	1492 * 60	1455	75	1345	55 1	255 I	125	1159	50
7	NĂ	NA	1490 * w	1443	$\mathbf{m}\mathbf{w}$	1368	m 1	250 * :	mw	1179	w
8	NA	1460 35	$\{ \begin{matrix} 1485 * & 35 \\ 1473 & 155 \end{matrix} \}$	1417	240	1350	5 1	306	35	1193	60
9	<u>ر 1500</u> 50	NA	∫ 1488 * 3 5	1422	185	1337	10 1	252	50	1184	80
9	1465 95	III	1470 145 (1486 185							(1189	65
10	NA	NA	$\{1450 \ 10$	1416	280	1350	10 1	263	110	$\{1165$	85
	10	• .			0	1.4		10		,	0
	13	14	15	10	6	17		18		l Ri	
No.	β_{CH}	vC=S	٧NO	\mathbf{P}	h	Me		βCH		breat	
	cm. ⁻¹ $\varepsilon_{\rm A}$	cm. ⁻¹ ϵ_A	cm. ⁻¹ ϵ_A	cm1	$\epsilon_{\mathbf{A}}$	cm1	ε _A c		$\epsilon_{\rm A}$	cm1	ελ
Pyrid-	2-thiones.										
1		NA	NA	N.	A	NA	1	012 *	25	993	100
2	1138 * 25	NA	NA	N.		1050				N	A
3	1144 110	NA	$\mathbf{N}\mathbf{A}$	${1074 \\ 1028}$	$rac{25}{20}$	NA	1	.018	20		Α
4	1148 m	NA	1110 w	Ν		NA			1 -		A
5	1141 90	NA	1104 80	N 1073 ک				010	15		A
6	1141 80	NA	1102 80	$\{1025$	5	NA		.010	20		A
7	()	1135 s	NA	N		NA		.040	m	998	
8	()	$\{ \begin{matrix} 1142 & 230 \\ 1112 & 440 \end{matrix} \\$	NA	N	A	1053	45]	020	25	N	A
-		(1113 * 150		((-	-)			0.07 * 7	90		• •
9	1150 45	$\begin{cases} 1104 & 175 \\ 1086 & 240 \end{cases}$	NA	$\left\{ 1027 \right\}$	* 1 3 0	NA	1	027 * 1	30	N	A
10	()	1142 290	<i>{</i> ¹¹¹² 35	Ν		NA	{]	1024	10	N	A
+ V	x)	200	1081 50	11	-		U	1013	15	-	

TABLE 2. (Continued.)							
No.	20 νC–O	21 Усн	22 Усн	Extra bands	M. p. or b		Ref.
	cm. ^{−1} ε _A	cm. ^{−1} ε _A	$cm.^{-1} \epsilon_A$	cm.⁻¹ ε _A	Found	Lit.	
1	NA	917 35	$\{ \begin{matrix} 845 & 20 \\ 837 & 20 \end{matrix} \\$	1097 15	105—107°	106—107°	h
2	NA	876 - 50	842 40		† 98—100°/2	$122 - 124^{\circ}/11$	i
3	NA	873 45	842 75	953 10	74—75°	75—76° ′	i
4	NA	${ 894 \atop 888 } { m \atop m }$	8 3 5 m		148—149°	149—150°	k
5	980 115	871 3 0	832 60		† 130°/0·05	130°/0·05	С
6	$\{ \begin{matrix} 960 & 40 \\ 939 & 40 \end{matrix}$	$\{ \begin{matrix} 912 & 70 \\ 867 & 45 \end{matrix}$	834 85		76—78°	76—78°	с
7	NA	874 w	< 800?		124 - 126	125	l , f
8	NA		804 45		88-90	89-90	m, f
9	NA		830 25	$\begin{cases} 990 & 15 \\ 952 & 15 \end{cases}$			Ь
10	NA		813 45		63 - 64	65 - 67	n

 $Nj = Nujol mull (insoluble in CHCl_3)$. sat. = saturated solution in CHCl_3. * Shoulder. * Band considered to be the superimposition of two bands. — Absence of band. (—) Band masked by stronger absorption. (CHCl_3) Band masked by solvent. NA = Band neither found nor expected. § Band the intensity of which is markedly raised by overlap with neighbouring band. † B. p.

Refs.: a, Tschitschibabin and Ossetrowa, Ber., 1925, 58, 1711. b, This work. c, Gardner and Katritzky, J., 1957, 4375. d, Cunningham, Newbold, Spring, and Stark, J., 1949, 2091. e, King and Ware, J., 1939, 873. f, Jones and Katritzky, J., 1958, 3610. g, Ochiai, J. Org. Chem., 1953, 18, 534. h, Königs and Geigy, Ber., 1884, 17, 589. i, Prill and McElvain, Org. Synth., Coll. Vol. II, John Wiley and Son Inc., New York, 1946, p. 419. j, Fischer, Ber., 1899, 32, 1302. k, Shaw, J. Amer. Chem. Soc., 1949, 71, 67. l, Philips and Shapiro, J., 1942, 584. m, Gutbier, Ber., 1900, 33, 3359. n, Shaw, Bernstein, Losee, and Lott, J. Amer. Chem. Soc., 1950, 72, 4362.

Approximate vibration modes of pyrid-2-ones.*

strong band at 3000—2940 [2975 \pm 20] * cm.⁻¹ of intensity (135—170) [(155 \pm 15)] * for the 4-series and (70—115) [(85 \pm 15)] for the 2-series. This band was not present for a carbon tetrachloride solution of 1-benzylpyrid-2-one and for a tetrachloroethylene solution of 1-methylpyrid-2-thione, which indicates that it was due to the H-bonded chloroform C-H stretching band (cf. refs. 2, 3).

C=O and C=S Stretching Modes (Table 1, cols. 5, 15; Table 2, cols. 3, 14).—These modes are found (see Table 3). In the 4-series earlier workers ⁸ assigned the band at *ca*. 1630 cm.⁻¹ (Table 1, col. 4) to the $\sqrt{C=O}$; the present assignment is in better agreement with the pyrid-4-thione spectra and we have been informed by Dr. L. J. Bellamy ⁹ that application

* Parentheses signify apparent molecular extinction coefficients and square brackets denote arithmetical means and standard deviations, calculated by omitting shoulders and, in the case of ε_A , overlapped bands.

⁸ Leonard and Locke, J. Amer. Chem. Soc., 1955, 77, 1852.

⁹ Personal communication, cf. Bellamy and Rogasch, Spectrochim. Acta, 1960, 16, 30.

TABLE 3.

	vC=O	vC=S
	$\begin{array}{c} 1577 - 1575 \text{ cm.}^{-1} (430 - 600) \\ 1666 - 1655 \text{ cm.}^{-1} (550 - 700) \end{array}$	$\begin{array}{c} 1119 - 1108 \ (> 550) \\ 1142 - 1112 \ (290 - 440) \end{array}$

of his method of solvent shifts led him independently to the same assignment. The low positions of the C=O stretching bands are in accord with the expected high contribution of single-bond character of this link. Our data for the C=S bands are in reasonable agreement with those of Spinner ¹⁰ who has discussed this region for pyrid-2- and -4-thione and their 1-methyl derivatives.

Ring-stretching Modes (Table 1, cols. 3, 4, 6, 7; Table 2, cols. 4, 5, 8, 9).—The bands are assigned to these modes as in Table 4. These compounds show the usual four ring-

TABLE 4.

4-Series: ring-stretching modes.

ca. 1650 cm.-1 shoulder.

1643—1621 cm.⁻¹ (440—650) [1630 \pm 10 cm.⁻¹ (555 \pm 90)] 1510—1484 cm.⁻¹ (45—180) [1502 \pm 11 cm.⁻¹ (80 \pm 50)] 1408—1394 cm.⁻¹ (25—155) for CO compounds; 1471-1470 cm.-1 (330-340) for CS compounds.

2-Series: ring-stretching modes.

1628—1590 [1603 \pm 17] cm.⁻¹; (300—370) for CO, (70—145) for CS 1572—1535 cm.⁻¹ (105—220) [1545 \pm 12 cm.⁻¹ (160 \pm 55)] 1500—1458 [1479 \pm 17] cm.⁻¹; (15—90) for CO, (15**5**—200) for CS 1455—1415 [1429 \pm 12] cm.⁻¹; (20—110) for CO, (240—280) for CS.

stretching bands, at positions not very different from those in pyridines and benzenes.⁴ The 4-series compounds are of C_{2v} symmetry and there is a very large disturbance of charge symmetry co-directional with the symmetry axis; the fact that one of the pair of higherfrequency bands is much stronger than the other is in agreement with this.¹¹ As expected, for the 2-series compounds of C_s symmetry, the difference in the intensities of the pair of higher-frequency bands is less. Changes in the position and intensity of the pairs of bands of lower frequency are less easy to explain: these bands are considerably stronger in the pyridthiones than in the oxygen compounds.

Vibration of the Benzyl Groups.¹²—The benzene ring vibrations near 1600 cm.⁻¹ are doubtless hidden by stronger absorption; those near 1490 and 1450 cm.⁻¹ can be distinguished (Table 1, col. 8; Table 2, col. 6), as can the phenyl β_{CH} frequencies near 1070 and 1028 cm.⁻¹ (Table 1, col. 17; Table 2, col. 16). A band at 1355–1350 cm.⁻¹ is possibly the CH₂ wagging mode.

Vibrations of the Methyl Groups (Table 1, col. 9; Table 2, cols. 7, 17).—Some bands in the 1450 and 1050 cm.⁻¹ regions are very tentatively assigned to methyl bending and rocking modes.

Ring Modes.—The band for the 2-series compounds at 1387—1345 cm.⁻¹ (5–45) $[1358 \pm 17 (20 \pm 15)]$ (Table 2, col. 10) is possibly the ring vibration (XVIII). A band has been reported at 1315 ± 11 cm⁻¹ in ortho-disubstituted benzenes ¹² but is usually not easily detected in heterocyclic compounds. In the 4-series the compounds also show some unexplained bands hereabouts (Table 1, col. 12). Aromatic compounds in which the ring is free from heavy substituents in the 1,3,5-positions show a ring breathing mode near 1000 cm.⁻¹; such are possibly the bands of Table 2, col. 19.

In-plane CH Deformation Modes (Table 1, cols. 13, 14, 16, 18; Table 2, cols. 11-13, 18).—These bands have been assigned (see Table 5) by comparison with other compounds containing the same orientation of ring hydrogen atoms.

The NO Stretching Vibration.—This will absorb at fairly high frequencies because the

¹⁰ Spinner, J. Org. Chem., 1958, 23, 2037.

¹¹ Katritzky, J., 1958, 4162. ¹² Randle and Whiffen, Paper No. 12, Report on Conference of Molecular Spectroscopy, Institute of Petroleum, 1954.

TABLE 5.

4-Series	para-Disubst. benzenes 13
Obscured	
Doublet at $\begin{cases} 1192-1174 \ [1185 \pm 7] \ cm.^{-1} \\ 1158-1144 \ [1151 \pm 7] \ cm.^{-1} \end{cases}$ variable ϵ_{A}	$[1176 \pm 6 \text{ cm.}^{-1} \text{ (var.)}]$
1093—1081 [1089 \pm 4] cm. ⁻¹ ; (<i>ca.</i> 20) 1030—1010 [1018 \pm 8] cm. ⁻¹ (20—30) for CO, (135—160) for CS	$[1111 \pm 7 \text{ cm.}^{-1} (20 \pm 15)]$
1030—1010 [1018 \pm 8] cm. ⁻¹ (20—30) for CO, (135—160) for CS	$[1013 \pm 5 \text{ cm.}^{-1} \text{ (var.)}]$
2-Series	ortho-Disubst. benzenes 12
1318—1254 cm. ⁻¹ (35—125) [1270 \pm 32 cm. ⁻¹ (80 \pm 30)] [
	$1160 \pm 4 \text{ cm.}^{-1} (20 \pm 10)$]
1150—1141 [1145 \pm 4] cm. ⁻¹ , ε_{A} variable [
1040–1010 cm. ⁻¹ (≤ 25) [1019 \pm 11 cm. ⁻¹]	$[1033 \pm 11 \text{ cm.}^{-1} (50 \pm 40)]$

NO bond has some double-bond character in these compounds (overlap of oxygen p-orbitals with the aromatic ring). Bands near 1325 cm.⁻¹ (Table 1, col. 11) and 1100 cm.⁻¹ (Table 2, col. 15) have been provisionally assigned to these modes, but the first is doubtful.

Alkyl-Oxygen Stretching Mode.—This has been assigned bands near 950 cm.⁻¹ (Table 1, col. 19; Table 2, col. 20).

Out-of-plane CH Deformations.—The characteristic in-phase mode of four hydrogen atoms in 2,3,5,6-positions is shown in the 4-series at 845—843 cm.⁻¹ (200—280) [844 \pm 1 cm.⁻¹ (240 \pm 35)] for the oxo-compounds and at 821—819 cm.⁻¹ (135—160) for the thio-analogues (Table 1, col. 20).

In the 2-series (Table 2, cols. 21, 22) there is a band at 917—871 cm.⁻¹ (30—70) (absent for two of the thio-compounds) and another at 845—832 cm.⁻¹ (20—85) for the oxocompounds and at 813 cm.⁻¹ for the thio-analogues. *ortho*-Disubstituted benzenes with two donor substituents absorb at 916—906 cm.⁻¹ (10—25) and many *ortho*-substituted benzenes show a band in the 900—800 cm.⁻¹ region.¹

General Conclusions.—The spectra of pyridones and pyridthiones have been shown to resemble those of other heteroaromatic compounds. The generalisations established for pyridines, etc., apply to these compounds and it has been possible to give a tentative assignment to nearly all the bands. The spectra reported here for potentially tautomeric pyridones and pyridthiones support the conclusion ¹⁴ that these compounds exist predominantly as such and not in the hydroxy- or mercapto-pyridine form.

Experimental.—1-*Benzylpyrid*-4-one. Pyrid-4-one (0.95 g.), benzyl chloride (1.25 g.), and sodium in ethanol (0.22 g. in 25 c.c.) were refluxed for 1 hr. The solid was filtered off and the filtrate evaporated to give 1-*benzylpyrid*-4-one (1.1 g., 60%) which crystallised from benzene as deliquescent plates, m. p. 109—111° (Found: C, 77.7; H, 6.3; N, 7.7. $C_{12}H_{11}NO$ requires C, 77.8; H, 6.0; N, 7.6%).

1-Benzylpyrid-4-thione. 1-Benzyl-4-pyridone (0.4 g.) was heated with phosphorus pentasulphide (0.8 g.) for 3 hr. at 130°. Aqueous sodium hydroxide (10% ca. 10 c.c.) was added and the alkaline solution extracted with chloroform (2 × 20 c.c.). The extracts were dried and evaporated to give 1-benzylpyrid-4-thione (0.19 g., 45%) which crystallised from ethanol as yellow plates, m. p. 183—185° (Found: C, 71.3; H, 6.0; N, 7.0. $C_{12}H_{11}NS$ requires C, 71.6; H, 5.5; N, 7.0%).

1-Benzylpyrid-2-thione was prepared by a method analogous to that of the 4-compound and crystallised from benzene as yellow needles (40%), m. p. 85–87° (Found: C, 71.0; H, 5.56%).

Other compounds were prepared by recorded methods and recrystallised or distilled immediately before use.

The spectra were measured under the same conditions as before.¹

We thank Dr. L. J. Bellamy for an interesting discussion and for communicating to us his unpublished results. This work was carried out during the tenure (by R. A. J.) of a D.S.I.R. maintenance grant.

UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE.

[Received, November 18th, 1959.]

¹³ Katritzky and Simmons, J., 1959, 2051.

¹⁴ Gardner and Katritzky, *J.*, 1957, 4375; R. A. Jones and Katritzky, *J.*, 1958, 3610; Mason, *J.*, 1957, 4874, 5010; 1958, 674.